Matter and Energy for Growth and Activity

The human body is an amazing mechanism. For students, learning how the human body works can prove to be an exciting educational adventure. Matter and Energy for Growth and Activity from NSTA Press provides in-depth and meaningful lessons that explore human body systems, matter and energy changes, food, and chemical reactions.

Matter and Energy for Growth and Activity, by AAAS/Project 2061, includes the Student Edition and Teacher Edition, and features 14 classroom-tested lessons that were developed by a team of scientists and science educators.

Designed for the high school classroom, the unit helps students to understand the matter changes involved in human growth and the energy changes involved in human growth and activity. Students also will delve into fascinating concepts such as how our bodies work to heal wounds, build stamina, and give us the energy we need to function day and night. 

The unit is designed to support all three dimensions of the Next Generation Science Standards, by integrating the disciplinary core ideas, crosscutting concepts, and science practices. Additionally, the lessons emphasize important relationships between mathematics and science, and students are asked to interpret data sets and graphs to provide evidence for their claims.

Along the way, students will discover their own answers to the unit question: “How do living things use food as a source of matter for building and repairing their body structures and as a source of energy for carrying out a wide range of activities?” Using a mix of experiments and activities they will conduct research and analysis, collect data, and reach their own conclusions.

Matter and Energy for Growth and Activity builds on the middle school unit Toward High School Biology (NSTA Press). Together the two units help students deepen their understanding of matter and energy changes in plants and animals and the role of chemical reactions in the growth, repair, and activity of living organisms.

With the Teacher Edition, educators gain access to helpful background information, teaching tips, and support that can make implementation of the unit seamless. Matter and Energy for Growth and Activity includes online resources, such as interactive media, videos, and handouts. The Student Edition has all of the student handouts.

Each lesson is sequenced to draw upon students’ prior knowledge and experience, support students as they investigate and make sense of phenomena and data, and guide them in modeling and explaining phenomena in terms of the underlying molecular mechanisms. Students will have plenty of opportunities to apply their new knowledge, practice synthesizing their ideas, and reflect on their learning as they move through each lesson.

Do you want to learn more? Check out the Matter and Energy for Growth and Activity Teacher Edition by reading a free chapter.  

Posted in NSTA Press Books | Leave a comment

Chemical Management

Middle and high school science teachers often have or should have the task of retrofitting their chemical storeroom. Critical issues such as what chemicals are acceptable for use and grade appropriate, how should they be labeled, how should they be stored, how long should they be stored and how should they be properly disposed of need to be addressed. Unfortunately, over time, these critical issues are ignored until there is an accident and/or change over in science staff. Other motivation for appropriate chemical management may come from the school’s chemical hygiene officer or safety officer, local fire marshal or state/federal OSHA inspection.

Retrofitting Chemical Management – Resources!

To help science teachers, their supervisor and chemical hygiene officer address this ongoing critical need, below are some suggested resources to help in the process. These should be especially helpful to those science educators with limited chemical use background.

1. General strategies – Chemical Management

a. Managing Chemical Wastes in the High School Lab – The American Association of Chemistry Teachers or AACT have a great resource which is spectral in helping the management of chemical use. It can be found at AACT

b. Guidelines for Chemical Laboratory Safety in Secondary Schools – The American Chemical Society’s book titled “Guidelines for Chemical Laboratory Safety in Secondary Schools” provides a series of steps in planning for hazardous chemical waste collection and disposal. It can be found at ACS 

c. High School Laboratory Self-Certification – The Colorado Department of Public Health and Environment has a self-certification resource again addressing safer use of chemicals in the lab and storeroom. It can be found at CDPHE

d. Managing Your Chemical Inventory – NSTA Safety Portal has a safety white paper titled – “Managing Your Chemical Inventory” It is in 3 parts and can be accessed at the following sites:

Part 1

Part 2

Part 3

e. MIT Environment, Health & Safety Office

f. Managing Chemical Retention and Storage – The Vanderbilt University Medical Center has a resource titled “Managing Chemical Retention and Storage.” It emphasizes that prudent chemical retention and storage practices are vital to maintain a safe laboratory working environment and to minimize the financial costs and environmental impact associated with the handling and disposal of unwanted chemicals. This is another great resource which can be found at  VUMC   

2. Grade Appropriate Chemicals

a. What are appropriate chemicals for middle school and high school science labs? Check out “Rehab the Lab” chemical list. It notes better professional safety practice for appropriate chemical use in elementary, middle and high school science labs. It also addresses recommended chemical use, their storage and their disposal. It can be found at Rehab the Lab 

b. Proper disposal of appropriate chemicals – The Rehab the Lab also has a resource on proper disposal of chemicals which can be very useful. It can be found at Rehab the Lab

3. Model Chemical Storage Patterns

a. One of the most popular means of storing chemicals is the Flinn Shelf storage pattern system. It can be found in Flinn catalog or at the Flinn Scientific website. They also have chemical storage area model floor plans – again at the same locations.

b. The MIT Environment, Health & Safety Office has a document titled “Chemical Storage.” The purpose of this document is to provide information and procedures to assure chemicals are stored safely in the work area, and in compliance with local, state, and federal regulations, standards, and guidelines. This great resource can be found at MIT

4. Chemical Storage Cleanout

a. Chemical forgotten in time! – Given that chemicals in storage more then likely go back for decades – the first thing that needs to be done is a chemical clean out! Many towns have local hazardous waste clean outs and allow school chemical disposal. Others do not and a commercial chemical disposal company would need to be secured. Make sure those chemicals being removed have the SDS or older MSDS if available. Store in a separate area of the chemical storeroom in trays for potential spill control. Use extreme precautions when removing older chemicals. Be careful for example if you find old peroxide formers like picric acid, ethers, etc. This is a good resource at UCSC 

b. Local assistance – There may be the need of the professional assistance by the local fire marshal in dealing with a number of these issues. Questionable chemicals should not be moved. Contact the local fire marshal to determine if certain chemicals are dangerous or not and how they should be handled. Also, when dealing with any chemicals – make sure appropriate PPE – gloves, indirectly vented chemical splash goggles, aprons, etc. are used. Also make sure there is effective ventilation working in the storeroom.

5. Publisher Text Series Resources

As to what chemicals or activities should be done will depend if the school has a commercial publisher’s chem book with lab manual or other resource being used. Most have chemical lists and management suggestions available with their programs and on their website.

Final Note – These are just some suggestions in dealing with these types of chemical management issues. Better to start as soon as possible before a chemical incident occurs endangering the safety and health of laboratory occupants!

Submit questions regarding safety to Ken Roy  or leave him a comment below. Follow Ken Roy on Twitter: @drroysafersci.

NSTA resources and safety issue papers
Join NSTA
Follow NSTA

This entry was posted in Safety. Bookmark the permalink.

Posted in Uncategorized | Leave a comment

Elementary Science is Essential

Blog post authored by Lisa Chizek

Elementary science is essential if we want our children to be successful in an ever-changing and complex world. Engaging in high-quality elementary science allows children opportunities to ask questions, investigate to find answers, make claims with evidence, and engage in scientific discourse. These experiences in science are necessary in order for children to develop into critical thinkers.  Unfortunately, many elementary schools focus on literacy and math in an attempt to raise test scores while kicking science to the curb. This teacher-directed focus dampens children’s enthusiasm for learning and doesn’t allow them to engage in higher-level thinking. Since children are innately curious about their world and how it works, elementary teachers should capitalize on their enthusiasm for learning. Science can drive learning because children are excited about it and they want to learn more. When they are engaged with scientific phenomena, children are inspired to want to read and write about it and reading and writing become meaningful and important tools for them in their learning.

Elementary Science Ignites an Enthusiasm for Teaching and Learning

            When a group of second-grade students was asked what they liked about doing science, they responded with a whole list of active and authentic learning experiences they enjoyed: discovering, exploring, experimenting, learning new things, figuring things out, doing observational drawings, and building things. Their enthusiasm for doing science came across clearly as they shared what they enjoyed.

            Sharing her perspective for teaching science, one elementary teacher explained how high-quality science is student-directed and thus students are enthusiastic when they have opportunities to engage in science. Additionally, her description illustrated how her students’ enthusiasm for doing science rejuvenated her passion for teaching. “I love teaching science because you can incorporate all areas of the curriculum with very little trouble. Science is already about math and inquiry, but it also includes literacy and social studies depending on the projects you engage your students in. There is a mystery about science that children love.  They love thinking about the way things work and can they make it work a different way.  It’s almost like science is the only time they get to choose how they learn…..we are all about their ideas.  In all other subjects, we give them the way to learn and it’s very black and white.”  

            When additional elementary teachers were asked what they liked about teaching science, they responded in a variety of ways. However, a clear theme emerged illustrating how their students’ energy and enthusiasm for learning science reignited their joy in teaching. In other words, the children’s excitement for learning science revitalizes the teachers’ joy in teaching. To help stress the importance of elementary science, NSTA developed a great resource with their position statement on elementary science education.

NSTA Position Statement on Elementary Science Education

Adopted by the NSTA Board of Directors, October 2018

What would you and your students say about science? Please share your responses in the blog discussion.

Posted in It's Elementary | Tagged , , , , | 3 Comments

Introducing the STEM Teacher Leadership Network

By Joni Falk, Co-director of the Center for School Reform at TERC
@STEMTLnet.org

The STEM Teacher Leadership Network (https://STEMTLnet.org), funded by the National Science Foundation (NSF), is inviting teacher leaders, aspiring teacher leaders, as well as researchers and administrators interested in effective school leadership, to join, view, and interact with this new virtual learning community and collegial network.

TERC announced the launch of the STEM Teacher Leadership Network (NSTA is an affiliate organization for the initiative) last week, and the site is already generating huge positive buzz.

“This interactive professional learning community will focus on how teacher leaders can affect change in STEM education,” said Joni Falk, Principal Investigator for the project.  “We’ve already heard from many teacher leaders who are excited that this network will enable them to explore new leadership paths and opportunities, connect to leaders across the country, and find relevant resources and upcoming events for their continued professional growth.”

The free membership will provide access to networking tools, resources, and interactive online events throughout the year to explore topics related to STEM teacher leadership. Members will share their leadership paths, challenges, strategies, resources, upcoming opportunities and events with each other.  

“NSF is pleased to support a project that is developing an interactive professional learning community for STEM educators,” said Nafeesa Owens, Program Director/Staff Associate within the Education and Human Resources Directorate at NSF. “There are excellent STEM teachers across our country who are leading in and out of the classroom each day. This project not only gives them needed resources, but also promises a network where they can grow and learn on their leadership journey together.”

Each month, the site will explore a theme related to teacher leadership. Each theme will have an online, interactive, expert panel, related resources, a blog, and a month-long facilitated discussion.  The first theme, beginning in December, will be “Leading Without Leaving the Classroom,” facilitated by Jay Labov (Retired Director of the National Academies Teacher Advisory Council) and Margo Murphy (high school science educator, recipient of the Presidential Award for Excellence in Mathematics and Science Teaching and an NSTA STEM Ambassador). The panel will include teacher leaders and researchers who will share their experiences and expertise and engage with the community. Be sure to register for the expert panel which will be held online, December 5th, 2019 at 7:30pm EST. You can register to attend at: https://stemed.adobeconnect.com/dectom/event/event_info.html

The STEM Teacher Leadership Network encourages all those interested in teacher leadership to join this network, share resources, and participate in monthly theme events, and ongoing group discussions. The site provides a venue for educators, researchers, principals and administrators to explore how teacher leadership expertise can be leveraged to improve STEM teaching and learning within schools, contribute to new research and development efforts, and influence education policy and its implementation at the district, state, and national level.

STEMTLnet launched as a beta-site in March 2019 and already has over 400 members. The network will grow exponentially with this official launch. Take an active role, join the site, and contribute to the conversation.

Visit https://stemtlnet.org/ to become a member.

TERC is a nonprofit dedicated to improving STEM teaching and learning for all. At the frontier of theory and practice, TERC’s work encompasses research, content and curriculum development, technology innovation, professional development, and program evaluation. TERC has a passion for social justice and strives to create level playing fields for all learners, reaching more than three million students every year. To learn more, please visit www.terc.edu

Posted in The STEM Classroom | Tagged , , , , | Leave a comment

Intentionally providing materials to sort

In addition to providing materials for children, we can ask ourselves, “What is my role as an educator when I provide materials for sorting?” If we were picking through lentils to sort out any wee stones before cooking, our job would be to give children experiences and information to help them identify what is a stone and what is a lentil. If we are sorting laundry to be washed, we would give children experiences and information about color bleeding and absorption to help them understand the reason for sorting. What is the reason for sorting a basket of multicolored and various sized plastic bears? Through sorting activities children are introduced to the idea of attributes, such as size, color, and weight. Non-uniform natural materials with more variation between items provide more challenging sorting experiences. “This rock is biggest.” “And the other rocks are littler.” An educator might ask, “How many different sizes are there?” Or, “Can they be put in a line from biggest to smallest?” Children will have ideas of their own on how the rocks should be sorted.

Child sorts small rocks into an egg carton.

Sorting is one way to use and make sense of data. It is a way to classify living organisms, materials and objects. Through many experiences making observations of earthworms, children learn that earthworms do not have legs. This knowledge helps them classify caterpillars and other larvae (such as beetle larvae often called “mealworms”) as not-worms but something else. They may decide that something else is an insect based on two attributes—the presence of legs, and having six legs. And put millipedes in a separate group based on their “many, many” legs.

One of the Erikson Institute Early Math Collaborative’s Big Ideas is that “attributes can be used to sort collections into sets.”  “Young children who understand the Big Idea that attributes can be used to sort collections into sets have a working knowledge of what a set is and how it is constructed.”

In Incorporating Math into Your Cold-Weather Routines, Math at Home blogger Diann Gano describes how she uses sets of cold-weather gear to help preschool children learn routine and patterns and sequence while teaching them to be self-sufficient. See her photos of a two-year-old demonstrating the “firefighter flip” for  getting the jacket on with arms in the correct armholes. In another post Gano relates how collected natural materials involved children in arranging the materials, sorting and creating patterns.

“One major use of pattern recognition is in classification, which depends on careful observation of similarities and differences; objects can be classified into groups on the basis of similarities of visible or microscopic features or on the basis of similarities of function” (NRC). Patterns is one of the Next Generation Science Standards (NGSS) Crosscutting Concepts, concepts that bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering.

Having an intention for offering materials for children’s use means we have some idea of what children are capable of and what they will learn through using the materials. Children may have other ideas—they usually do! In the Early Years column in the November 2019 issue of Science and Children I wrote about how children’s sorting ideas made me reconsider how the random grouping of model (toy) animals in one tub on the shelf affected how children sorted them, and perhaps led to some misconceptions. 

National Research Council (NRC). 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press.

Posted in Early Years, Uncategorized | Tagged , , , , | 1 Comment

Star Light, Star Bright

I was planning a lesson for fifth grade about constellations. If you have any ideas, I would love to hear them.
—B., Illinois

Students often develop the misconception that constellations are two-dimensional. It’s like looking at a road map and never understanding that there is a three-dimensional topography to the land. I would stress that the stars in a constellation are almost all at different distances from Earth. Your students can research their own constellations to make three-dimensional models which, when viewed from the right direction, form the shape we know. The American Museum of Natural History has some related activities http://bit.ly/346dKi0.

Students should make some night observations of stars, the Moon, and planets. There are many online maps to download for each month of the year. Have students learn the prominent constellations and how to use “finder stars.” Have your students construct planispheres—simple paper-and-card stock dial maps that you rotate to the correct time and date for observation. There are many to choose from online such as this one from Sky & Telescope: http://bit.ly/2po0Q0f.

Why not make the lesson cross-curricular? The sky map we follow reflects Greek culture from two and a half millennia ago. The names and stories of the constellations are interesting to students as they ponder why there is a harp (Lyra) and a winged horse (Pegasus) in the sky, and who was Perseus? Give them a star map without lines or names. Ask them to make up their own constellations and stories. I can bet you that they will see cell phones, anime characters and pop stars.

Hope this helps!

Image by Gerd Altmann from Pixabay

Posted in Ask a Mentor | Tagged , , , , , | Leave a comment

Bring STEM Practices Into the Secondary Classroom by Juan-Carlos Aguilar, Anne Petersen, Megan Schrauben

STEM—Science, Technology, Engineering, and Mathematics—is discussed in the news, politics, and education journals, yet what does it really mean for classrooms? The Council of State Science Supervisors (CSSS) works to support secondary science in various ways, including through the efforts of its STEM committee. The STEM committee is now focusing on determining current practices in STEM education across the United States and providing educators with instructional best practices to help them prepare students for higher education and the workforce.

What is STEM instruction?

Many articles about STEM instruction focus on opportunities for collaboration, development of the 5 C’s (communication, collaboration, citizenship, and critical and creative thinking), integrated instruction, teamwork, opportunities for hands-on activities, relevant problem solving, and the use of problem-project-, or place-based learning. The question now is this: How does STEM instruction differ from good instruction, and what practices can classroom teachers use to create a STEM classroom?

In the secondary science classroom, STEM education can be viewed as instruction that integrates mathematical, engineering, English language arts, and science concepts in a meaningful way. It also provides opportunities for students to apply these concepts to real- world problems through the use and development of technology, thus preparing them for the workforce. And STEM education allows for the seamless development of skills and/or industry-recognized credentials while intentionally introducing students to possible career paths.

How can teachers create a climate that fosters STEM education?

Creating a STEM climate within a school or team is not accomplished through the work of one teacher in a single discipline. Teachers should collaborate to explore opportunities for integrated curriculum and create a plan for reaching all students. In developing this STEM climate, several factors should be considered.

  1. Aligning language, terms, and processes

Many students and teachers work in silos within a secondary setting. The prevailing thought is that science should be taught and learned in science class and mathematics should be taught and learned in mathematics class. As science educators, we know that math is the language of science. If we use different terms or phrases for mathematics and its processes in our science class, then the mathematics teachers’ terminology and phrasing may confuse students, particularly those with low efficacy in mathematics. Mathematics, science, and Career and Technical Education (CTE) teachers should meet regularly to review the terms used in each of the respective disciplines to ensure the terminology is consistent for students.

  1. Identifying areas of discipline alignment

It can be difficult to determine opportunities for cross-curricular instruction among high school disciplines, particularly when students are accelerated in one subject but not in another. However, it is possible.

For example, students may learn about the chemistry gas laws first in Algebra II because gas laws provide mathematics teachers an authentic application for inverse and direct proportions. In biology, statistics are used in many scientific studies and align with the elementary statistics concepts taught in many Algebra I and II courses. In a CTE culinary class, students can study the effect of pH on the preparation of cakes, thus reinforcing the concepts of pH taught in many different science courses. Manipulating data in large data sets is a skill taught in computer science; however, science may allow for generating questions that will lead to using and analyzing this data, particularly in the areas of astronomy and meteorology. Computer science allows us to synthesize large data sets that would be very difficult, if not impossible, to do by hand.

In addition, students from multiple disciplines may participate in the same engineering design challenge; however, the content approach may vary based on the course. A science class can study rockets through a physics lens, while an Algebra II student may describe or predict the path of a rocket using quadratic formulas. A computer-aided design (CAD) student may take the same challenge and create a CAD schematic of the prototype before building the actual prototype, while a trigonometry student may use tangents to determine the rocket’s height. Collaborating in discipline teams helps identify areas of alignment and encourages planning of shared projects.

  1. Educating students about career pathways

One argument for STEM education is the need for skilled applicants for STEM jobs. Students need to be aware of the variety of STEM careers they can pursue, as well as the academic pathways that would best prepare them for these careers. Quality STEM instruction should also develop budding entrepreneurs—or the next group of empowered innovators. Teachers and counselors should be knowledgeable about these fields, and with guidance from higher education and businesses, steer students to coursework that best prepares them for these careers.

A colleague once said STEM education is an ecosystem within good instruction that prepares students for growing job fields. Through our own collaborative work as educators, we must provide students with the content, skills, and processes needed to succeed in STEM fields. Go Team STEM!

Juan-Carlos Aguilar is director for Innovative Programs and Research at the Georgia Department of Education. He provides internal evaluation support for innovative projects awarded to the State Department of Education and manages a portfolio of projects funded by the National Science Foundation, the U.S. Department of Education, and private foundations. For nine years, he served as state liaison for science, engineering, and STEM professional organizations. He has also participated in national STEM organizations, most currently as a member of the National Academies of Sciences, Engineering, and Medicine’s America’s Lab Report committee. As past president of CSSS, Aguilar coordinated projects designed to support states as they adopted and implemented the Next Generation Science Standards (NGSS) and oversaw the development of Professional Development Standards in collaboration with CSSS Higher Education partners.

Anne Petersen is a science coordinator with the Virginia Department of Education. She has worked in rural and urban public school divisions as both a biology and chemistry teacher and as a science supervisor. In addition, she was an adjunct professor at the College of William and Mary, where she taught a secondary science education course for preservice teachers. Petersen earned her doctorate in Education Policy, Planning, and Leadership at the College of William and Mary.

Megan Schrauben is Michigan’s MiSTEM Network Executive Director, which includes facilitating the activities of the Governor’s MiSTEM Advisory Council and granting dollars for STEM programming. MiSTEM’s state office is housed at the Department of Labor and Economic Opportunity (LEO) and coordinates efforts with the Michigan Department of Education (MDE). Schrauben holds a BS in physics and mathematics education from the University of Michigan and a Master’s of Applied Science from Michigan Technological University. During her tenures at these institutions, her passion for integrated STEM instruction evolved from research internships at CERN in Switzerland, Fermilab near Chicago, the National Superconducting Cyclotron Laboratory at MSU, and a teaching/engineering position in Santa Cruz, Bolivia. Before joining the LEO department, Schrauben taught high school physics and math in Jackson, Michigan; was director of the Mathematics and Science Center in Jackson County, where she also served as president of the Michigan Mathematics and Science Centers Network; then moved to the MDE, where she was the Integrated Instruction Consultant. Currently she serves as Director at Large for CSSS and as an appointed member of the Governor’s Future Talent Council 21st-Century Talent Creation Subcommittee.

Note: This article is featured in the November 2019 issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction.  Click here to sign up to receive the Navigator every month.

Visit NSTA’s NGSS@NSTA Hub for hundreds of vetted classroom resourcesprofessional learning opportunities, publicationsebooks and more; connect with your teacher colleagues on the NGSS listservs (members can sign up here); and join us for discussions around NGSS at an upcoming conference.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Posted in Next Generation Science Standards, Uncategorized | Tagged , , , , | 2 Comments

Identifying and Implementing Instructional Materials in Middle School by Michael Heinz, Erin Michael Escher, Ellen Ebert

Identifying and implementing science instructional materials that equitably engage students in active learning of science concepts, practices, sensemaking, problem-solving, and decision-making can be overwhelming for schools. The Council of State Science Supervisors (CSSS) works to support science educators in various ways, including providing guidance and support for selecting high-quality instructional resources. This committee, comprised of state science supervisors from across the country, is working to inform statewide policies, support the development of freely accessible science instructional materials, and offer ideas for expanding the science education communities’ perceptions about what is possible. This blog post exemplifies the work CSSS is doing to support educators.

Finding and implementing science instructional materials is challenging and high stakes, especially when we want students to experience learning as meaningful (making sense of ideas rather than just reproducing them), cumulative (requiring them to use and build on what they figured out in previous lessons), and progressive (improving explanations or solutions over time by iteratively assessing them, elaborating on them, and holding them up to critique and evidence). Whether inspired by economic realities and/or the desire to provide the best learning opportunities for students, teachers are purchasing commercial products that are aligned to the science standards, turning to the internet for open education resources (OER), purchasing materials created by other educators, or creating their own. Each strategy has its merits and challenges. In this blog post, we will provide some suggestions for science curriculum adoption committees.

The science instructional material marketplace is rapidly filling with lessons, units, and programs. Each developer makes claims about their alignment with science standards. Selecting and implementing science instructional materials is expensive and will impact students for years to come. Purchasing a fully developed commercial science program has much more appeal. It is essential, though, for the committee to exercise due diligence to verify claims of alignment. Later in this post, we share criterion-referenced tools the committee can use to complete this step.

Fiscal realities, frustrations over being unable to purchase curriculum that is aligned to the standards, or a desire to find more equitable and accessible instructional materials are motivating educators to search online. Some educators are turning to Open Educational Resources (OER), learning, teaching, and research materials that are public domain or have been released under an open license that permits no-cost access, reuse, repurposing, adaptation, and redistribution. Other educators are turning to websites that sell teacher-developed instructional materials. These are often described as “for teachers, by teachers.” Downloading OERs or purchasing online lessons and units allows educators to create a custom curriculum from scratch. As with commercially available science programs, the committee needs to verify any claims of alignment using criterion-based rubrics and small-scale piloting.

We pause here to discuss the “Lemony Snicket curriculum” trap. Not attending to an evidence-based sequence of learning will likely lead to a curriculum that is a series of unfortunate activities. Regardless of the source of instructional materials, curriculum coherence must receive careful attention. Each unit of instruction should be anchored by engaging phenomena or engineering design and have a storyline that guides the selection of sensemaking activities. A logical scope and sequence throughout a grade level and across grade levels is also vital.

Regardless of approach to selecting and implementing science instructional materials, the committee needs to make evidence-based decisions. Due diligence should include, but not be limited to, reviews by third-party reviewers. EdReports, the Science Peer Review Panel (PRP) at Achieve, and NSTA curators can provide criterion-based information about the extent to which units, lessons, and/or programs are consistent with three-dimensional science standards. Reading the reviews is useful in culling the field of potential instructional materials to a list of options that is manageable.

Once the committee has chosen which products to consider, they need to conduct their own impartial criterion-based evaluation of the products to determine what will serve students the best. This deeper evaluation frequently uncovers aspects of the material that are important to schools, but not a part of the third-party reviews. The EQuIP Rubric for science and NextGen TIME are exemplary resources for this purpose because they are criterion-based tools that are freely available and intended to be used collaboratively among educator reviewers.

The purpose of the EQuIP Rubric for Lessons and Units: Science, Version 3.0 and review process is to (1) review existing lessons and units; (2) provide constructive criterion-based feedback and suggestions for improvement; (3) identify examples/models; (4) inform the development of new lessons, units, and other instructional materials; and (5) foreground equity. This rubric is ideal for evaluating a random sampling of units from a program, OERs, and teacher-developed instructional materials.

NextGen TIME is a suite of tools and processes for curriculum-based professional learning that helps educators evaluate, select, and implement instructional materials designed for next generation science. NextGen TIME empowers educators to aim higher and accomplish more during the instructional materials selection process. It’s not just about choosing better materials, but also about improving next generation science instruction and achievement for all students.

Evaluating and selecting instructional materials that will lead your students to proficiency with the standards is only part of the work. Successful implementation of the new instructional materials requires the school system to be synchronized. These questions can frame the next part of the selection and implementation process.

  • What expertise is available in the community’s businesses, informal education organizations, and community-based organizations that can be leveraged when selecting and implementing science instructional materials?
  • Do we have sufficient funds to purchase any materials and supplies that we do not currently have?
  • What research and design specifications guided the development of the curriculum material?
  • How can our instructional practices evolve so that we can use the materials with fidelity?
  • What did the publisher do to ensure that the instructional materials are equitable and accessible to all of our students?
  • How will the school support sustained and in-depth professional learning for teachers?
  • What is the communication plan to prepare parents for seeing instructional materials and student artifacts that look different from what they experienced in school?
  • What is the impact on our scope and sequence? Will there be gaps in student learning if we follow the curriculum’s scope and sequence? How do we manage change? Will there be resistance to changing what people may have taught in the past? Are there skills or pedagogical content knowledge gaps that need to be overcome?

Selecting and implementing high-quality science instructional materials is incredibly important work that requires a long view. Local and state guidance influence the timeline for when the selection of instructional materials may be revisited. Using evidence-based criteria to select the material is only part of the process. Tools like the EQuIP Rubric for science are useful in uncovering evidence. NextGen TIME provides comprehensive guidance on selection and implementation. After the review, the best curriculum will attend to equity, cultural responsiveness, and accessibility, the vision of science education described in A Framework for K–12 Science Education.

Michael Heinz identifies as a recovering middle school science teacher. His credentials include a BS from Penn State University, a MS from Texas A&M-Corpus Christi, and a “dad degree” that was delivered in 2004. His dry-erase markers were pried from his hands in 2005. Since then, he has served as science coordinator for the New Jersey Department of Education, where he works on science education issues related to academic standards, curriculum and instruction, and professional learning. He was elected to the CSSS Board of Directors in 2018.

Erin Michael Escher recently joined the Rhode Island Department of Education as Science & Technology Specialist after 20 years of teaching science at the middle level.  He’s dedicated to making real-world connections by engaging students with nature to explore local phenomena. In addition, he has been an advocate and mentor for professional learning as an induction coach and instructional science coach. He holds National Board Certification in Early Adolescence/Science, a BA in environmental studies, and an MEd in curriculum instruction and assessment with a STEM leadership emphasis.

Ellen Ebert is director of science education at the Office of the Superintendent of Public Instruction in Olympia, Washington. She is a former high school chemistry teacher and past president of CSSS. Ebert has a master’s degree in educational technology, and a PhD in science education. She has been honored with several awards, including the Presidential Award for Excellence in Science Education and the Valerie Logan Leadership in Science Education Award. Her current work focuses on the implementation of a state proviso supporting teacher professional development in the Next Generation Science Standards (NGSS), including a special emphasis on the NGSS climate science standards.

Note: This article is featured in the November 2019 issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction.  Click here to sign up to receive the Navigator every month.

Visit NSTA’s NGSS@NSTA Hub for hundreds of vetted classroom resourcesprofessional learning opportunities, publicationsebooks and more; connect with your teacher colleagues on the NGSS listservs (members can sign up here); and join us for discussions around NGSS at an upcoming conference.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Posted in Next Generation Science Standards, Uncategorized | Tagged , , , | 1 Comment

Ensuring All Elementary Students Have Access to Science Learning by Kathy Renfrew and Amber McCulloch

Ensuring all students have access to science learning is part of the vision in A Framework for K–12 Science Education. Yet in many elementary schools, teachers have little time for science. This is such a disservice, as engaging in the science and engineering practices enables students to begin to figure out the world in which they live. As an organization, the Council of State Science Supervisors (CSSS) works to support elementary science in various ways, including through the efforts of the Supporting Elementary Science committee and resources developed across states.

One strategy for supporting elementary science is building broader awareness of the importance of science in the elementary grades, including helping school administration understand the importance of ensuring science is a regular part of every student’s learning experience. Adequate time to learn science concepts throughout elementary school supports the vision of the Framework that students’ understanding builds coherently in learning progressions across grades K–12.

NSTA’s Position Paper on Elementary Science and STEM Teaching Tools’ Why Do We Need to Teach Science in Elementary School, are among the resources available to help build awareness. In addition, states have developed relevant resources. Links to each state’s resources and other resources are available on the CSSS website. NSTA’s website also has an interactive map with links to state resources.

Another tool for building awareness that might be especially helpful at school and district levels is the Elementary Science Workshop developed by co-author Amber McCulloch in partnership with the Association of Washington School Principals. This resource also describes the current reality in many elementary schools and guides administrators in assessing their schools and/or systems and creating an action plan for increased elementary science.

Integrating science across other content areas is another strategy for increasing time for and prioritizing science in the elementary grades. During science instruction, students are speaking, listening, reading, and writing. They are also thinking mathematically as they make sense of patterns, trends, and relationships found in their data. This awareness creates a purpose for instruction by providing a context that is relevant and meaningful to students.

STEM Teaching Tool 62, What does subject matter integration look like in elementary instruction? Including science is key?—created in partnership with CSSS’s Supporting Elementary Science committee and University of Washington’s Institute for Science + Math Education—provides ideas and resources to support integrating science with other subjects. Additionally, this Project-Based Learning (PBL) plan from the Nebraska Department of Education presents an integrated learning experience that highlights science. These products represent true collaboration among state science supervisors, research partners, and partner organizations.

Committee work is strengthened by including research partners. For instance, a collaboration between Carla Zembal-Saul from Penn State and our CSSS working committee, Supporting Elementary Science, supported the development of several draft STEM Teaching Tools. This work would not have been possible without the support of Phil Bell from the University of Washington, with funding from the National Science Foundation. Another key relationship is that of the National Academies and CSSS. Many of the publications available through the Board on Science Education at the National Academies, such as English Learners in STEM Subjects and Literacy for Science: A Workshop Summary, are crucial resources for supporting science education. Last but not least is the collaboration of CSSS and NSTA, which is providing a venue for sharing this work.

Kathy Renfrew is an experienced elementary teacher/educator who has held many roles in her career. She was recruited by the Vermont Agency of Education to serve as Elementary Science Assessment Coordinator. In that role, she was involved with the drafting, adoption, and implementation of the Next Generation Science Standards in Vermont. When she returned to Massachusetts, she served as elementary science coach. Currently Renfrew is an education specialist at the Wade Institute for Science Education, a virtual coach for Sibme, and an EdReports reviewer. She earned a bachelor’s degree in Human Development from the University of Massachusetts in Amherst, as well as a M.Ed in Professional Teaching and a MS in K–8 Science Education.

Amber McCulloch is Executive Director of Learning, Teaching, and Family Support K–Postsecondary at Puget Sound Educational Service District, which provides systemic support to 35 districts, as well as charter schools and tribal compact schools in the greater Seattle area, serving 40% of the state’s student population. Before that, she was K–12 Science Specialist at the Office of Superintendent of Public Instruction in Science Learning and Teaching in Washington State, where she supported statewide science efforts to implement the state’s Science Learning Standards (Next Generation Science Standards). McCulloch holds undergraduate degrees in Communications and Elementary Education; a MS Ed in Curriculum, Instruction, and Assessment; and a doctorate in Educational Administration and Policy.

Note: This article is featured in the November 2019 issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction.  Click here to sign up to receive the Navigator every month.

Visit NSTA’s NGSS@NSTA Hub for hundreds of vetted classroom resourcesprofessional learning opportunities, publicationsebooks and more; connect with your teacher colleagues on the NGSS listservs (members can sign up here); and join us for discussions around NGSS at an upcoming conference.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Posted in Next Generation Science Standards, Uncategorized | Tagged , , , | 2 Comments

New NSTA Press Books Help Young Students Apply Science to the Real World

Would you like to help your students understand the connections between learning science in school and using it in their everyday lives? The STEM Road Map Curriculum Series from NSTA Press was developed to do just that. With the goal of infusing real-world learning contexts and authentic problem-solving pedagogy into the classroom, the series helps educators to create an integrated approach to teaching science, technology, engineering, and math. Students will learn new concepts and work collaboratively to apply them during creative, hands-on activities. 

Developed by STEM educators Carla C. Johnson, Janet B. Walton, and Erin Peters-Burton, the series covers all the STEM concepts as students advance from kindergarten through grade 12.  The modules are designed to be both in-depth and flexible, giving teachers room to customize them to meet their needs. 

The STEM Road Map Curriculum provides the perfect set of tools for districts, schools, and teachers who are charting a course toward an integrated STEM approach. The series is anchored in the Next Generation Science Standards, the Common Core State Standards, and the Framework for 21st Century Learning, and the lessons are designed to be meaningful, motivational, and engaging. 

Students will have ample opportunities to design technologies and learn from their failures and efforts along the way. They will practice asking critical questions, analyzing data, thinking strategically, and working collaboratively. They will be encouraged to imagine and create. 

Three new elementary school-focused books from the series will be coming off press this fall. Natural Hazards, Grade 2: STEM Road Map for Elementary School presents students with the challenge of helping a community to prepare for natural hazards such as floods, wildfires, and earthquakes, using authentic problem-solving exercises. 

This interdisciplinary module allows students to explore cause and effect. Working collaboratively in teams, they will identify natural hazards and their basic causes, and think about how these disasters affect people, animals, and communities. They will model natural hazards, and create preparedness plans that could serve to mitigate their impact.

With Influence of Waves, Grade 1: STEM Road Map for Elementary School students will conduct investigations that combine science, English language arts, mathematics, and social studies as they explore how waves work. They will discover that waves in water and sound waves come from different sources and travel in different ways. Then, they will enjoy designing and building their own musical instruments and producing a musical showcase replete with a special light show. 

With Physics in Motion, Grade K: STEM Road Map for Elementary School students will investigate energy, gravity, friction, and speed and use the engineering design process to design, build, and test marble track roller coasters. They will further expand their projects by designing a fun-filled theme park. 

Through the module, the students will be learn to demonstrate their awareness of motion- and energy-related concepts through play; use technology to research and communicate information; and have a wonderful time learning challenging concepts in a fun-filled, collaborative environment. 

Ready to chart a new path? Learn more about the STEM Road Map series and find the right book for your class. 

Read a sample chapter from Natural Hazards, Grade 2: STEM Road Map for Elementary School.

Posted in NSTA Press Books | Tagged , , | Leave a comment